3D graphene supported MoO2 for high performance binder-free lithium ion battery.

نویسندگان

  • Zhi Xiang Huang
  • Ye Wang
  • Yun Guang Zhu
  • Yumeng Shi
  • Jen It Wong
  • Hui Ying Yang
چکیده

In this work, we report the synthesis of MoO2 nanoparticles grown on three dimensional graphene (3DG) via the reduction of α-MoO3 nanobelts through a facile chemical vapor deposition (CVD) approach under argon protection gas environment. In this synthesis approach, the presence of hydrophobic 3DG promoted the Volmer-Weber growth of MoO2 nanoparticles (30-60 nm). The as-prepared MoO2-3DG nanocomposite was directly used as a binder-free anode electrode for lithium ion batteries (LIBs) without additives and exhibited excellent electrochemical performance. It delivered high reversible capacities of 975.4 mA h g(-1) and 537.3 mA h g(-1) at the current densities of 50 and 1000 mA g(-1), respectively. Moreover, the electrode also showed an increased capacity from 763.7 mA h g(-1) to 986.9 mA h g(-1) after 150 discharge and charge cycles at a current density of 200 mA g(-1). The enhanced electrochemical performance of MoO2-3DG nanocomposite electrode may be attributed to the synergistic effects of MoO2 nanoparticles and 3DG layers. This facile CVD synthesis process presents a feasible route for large-scale production of high performance, environmentally friendly electrode. In addition, this process also has the potential of being utilized in other materials for energy storage devices application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

Societies' increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new ...

متن کامل

Non-Annealed Graphene Paper as a Binder-Free Anode for Lithium-Ion Batteries

Non-annealed graphene paper, prepared via reduction of prefabricated graphene oxide paper with hydrazine hydrate, was employed as the sole component of a binder-free lithium-ion battery anode, circumventing the polymer binders and other additives required for the fabrication of conventional electrodes. The binder-free anode fabricated from this non-annealed paper possessed excellent cyclability...

متن کامل

Enhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery

In this research, inorganic material type and content influence on coating of commercially available polypropylene (PP) separator were studied for improving its performance and safety as lithium ion battery separator. Heat-resistant nanopowders of Al2O3, SiO2 and ZrO2 were coated using polyvinylidene fluoride (PVDF) binder. Coating effects on the separators morphology, wettability, high tempera...

متن کامل

A simple reduction process to synthesize MoO2/C composites with cage-like structure for high-performance lithium-ion batteries.

Large-scale MoO2/carbon composites with a cage-like nanostructure have been synthesized by a simple hydrothermal reduction process. During the hydrothermal process, ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O) was employed as starting material and ascorbic acid as a structure directing agent, reductive agent and carbon source. MoO2/C nanospheres with diameters of about 15-25 nm were inte...

متن کامل

A General Strategy to Fabricate Carbon‐Coated 3D Porous Interconnected Metal Sulfides: Case Study of SnS/C Nanocomposite for High‐Performance Lithium and Sodium Ion Batteries

Transition metal sulfides have a great potential for energy storage due to the pronouncedly higher capacity (owing to conversion to metal or even alloy) than traditional insertion electrode materials. However, the poor cycling stability still limits the development and application in lithium and sodium ion batteries. Here, taking SnS as a model material, a novel general strategy is proposed to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 16  شماره 

صفحات  -

تاریخ انتشار 2014